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Frequency entrainment of nonautonomous chaotic oscillators
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We give evidence of frequency entrainment of dominant peaks in the chaotic spectra of two coupled chaotic
nonautonomous oscillators. At variance with the autonomous case, the phenomenon is here characterized by
the vanishing of a previously positive Lyapunov exponent in the spectrum, which takes place for a broad range
of the coupling strength parameter. Such a state is studied also for the case of chaotic oscillators with ill-
defined phases due to the absence of a unique center of rotation. Different phase synchronization indicators are
used to circumvent this difficulty.
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Synchronization of coupled chaotic systems has attractedhere the subscripts 1 and 2 refer to oscillator 1 and 2,
an increasing interest in recent yedts, insofar as several respectively, dots denote temporal derivativAs=0.6A,
natural observationf2,3] and controlled laboratory experi- =0.2B=1,C=2,0;=0.6, and w,=0.65, are parameters
ments[4] have pointed out its ubiquitousness and relevancehosen in order to produce a chaotic dynamics for both un-
in nonlinear science. coupled oscillators. In the following we will mainly concen-

In particular, phase synchronizatioRS of chaotic oscil-  trate on the influence of the coupling parameteon the
lators refers to a process whereby a weak coupling makes ttd/namics, while the influence of the other parameters will be
phases of the interacting systems evolve in step with eacpresented elsewhere. All numerical integrations are per-
other, even when the corresponding amplitudes are only federmed by means of a fourth-order Runge-Kutta algorithm
bly correlated5]. More preciselym:n PS corresponds to a with integration time ste@t=5x10"3,
situation where the lifts of the two phases to the real line In the uncoupled case and for the selected values of pa-
and ¢, satisfy|,—(m/n) 4| <C, with C being a positive rameters, the two oscillators exhibit a chaotic motion devel-
constant, thus indicating that the coupled oscillators evolveping onto an attractor which does not display a unique cen-
with a m:n bounded phase difference. ter of rotation[see Fig. 1a)]. At weak coupling, the two

PS is closely related to the presence of two distinct selfdistinct forcing frequenciess; and w, prevent frequency
sustained oscillators whose original different rhythms are adand phase synchronization, insofar as both oscillators will
justed by the coupling. This fact made that such studies wershow a strong component of these frequencies in their Fou-
so far mostly limited to the autonomous case, where PS waser spectra. Intermediate couplinfgs=1 in Fig. 1(b)] pro-
shown to occur in correspondence to the setting of a contracuce a slightly distorted attractor in phase space, which how-
tive direction for the phase difference, which occurs when aver does not significantly changes the qualitative features of
zero Lyapunov exponent in the spectrum takes a negative
value as the coupling strength is increa$gH

In this paper we show that a completely different scenario
emerges for chaotic nonautonomous oscillators. Here, all
zero Lyapunov exponents are insensitive to the coupling, and
a frequency entrainment of dominant peaks in the chaotic
spectra occurs in correspondence to a previously positive
Lyapunov exponent that vanishes over a broad range of the
coupling strength parameter. This indicates that the rhythm
adjustment process here takes place also in the absence of a
contractive direction for the phases.

To demonstrate the phenomenon, we will refer to a pair of
forced Van der Pol oscillatorg6] [X;,—AXyA1—x3))
+Bxi2=Csin(w1'2t)] in a bidirectional symmetrical cou-
pling configuration. The equations of motion read

X127 Y12

o U2\ Ry3 , _
Y127 Ary1 A1 X1 ) = BXi o Csinfw1,22) + e(X21~ X1 2), FIG. 1. (y;,X;) projection of the attractor of Eqgl) for (a)

€=0 (uncoupled cage (b) e=1 (intermediate coupling and (c)
z=1, (1) €=2.7 (strong coupling Other parameters specified in the text.
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FIG. 2. (a) Lyapunov exponents of Egél) vs €, (b) linear cross
correlation(Pearson’s coefficienbetweenx; andx; vs e. correlation coefficient tends te-1, which means that we
have complete synchronization in antiphase.
the original chaotic motion. Finally, a stronger coupling The use of linear correlation is subject to caution when-
[e=2.7 in Fig. Xc)] has the effect of destroying the chaotic ever one deals with chaotic signals. An alternative way to
attractor and transforming it into a quasiperiodic one. Thestudy the synchronization properties of the coupled system
coupling induces a suppression of ch@ipksand is associated is to measure the average mutual informatidretween the
with the signalsx,(t) and x,(t) being in antiphase. This two system$9]. In the present case, the two bivariate signals
situation stems from the fact that both system have differentire s, (t) ={x,(t),y1(t)} ands, ,=s,(t+7) ={x,(t+ 7),y(t
forcing frequencies and therefore synchronization in phase is- 1)}, wherer is a delay timeg(positive or negative andl is
not possible. defined by
As a first task, we make use of the standard analysis tools
for the evaluation of Lyapunov exponents in EG9.[8]. The P1aAs1,%2,)
results are reported in Fig.&, where the vertical dashed I(T):lesz P12$1,%,)l0g, Pi(s)Py(sy)
lines are used as a guide for a better visualization of the T

different regimes. A=0, the spectrum is composed of two where P, is the joint probability for measuring,(t) and
positive, two negative, and one zero exponents. This Iattegz(H 7) andP, andP, are the individual probability densi-
one corresponds to the equatioa 1 (and therefore is insen- tjes for the measurement of ands,, respectively.
sitive to the coupling accounting for the invariance of Egs.  calculations have been performed with “bins” of X85
(1) with respect to time translations. N cells in order to construct the histogramsspfands,, while
As e increases, one of the originally positive exponentsthe joint histogram was composed of a four-dimensional ar-
decreases to a slightly negative value in the range<®.3 ray of 15 cells. The results are sketched in Fig. 3 as a func-
<0.56. For 0.56e<1.61, _thIS exponent becom_es zero, andtjon of the two-dimensional parameter spdeg). Two pla-
eventually takes a negative value fer-1.61. Finally, for teays can be distinguished while varyirg the first one
€>2.4 no positive Lyapunov exponents are present in theyccurring fore<[0.3,1.6 and the second one fer-2.4. This
spectrum, indicating that chaos has been suppressed apgter one corresponds to a higher valuel otorroborating
the signalsx,(t) and x,(t) are sitting on a quasiperiodic the fact that synchronization is an increasing functiore.of
attractor. o The structure obtained by varyingat fixede) indicates that
Another insight into the synchronization process can behere are certain preferred delay times for which the mutual

gathered by comparing Fig.(&@ with the evolution of the  information is maximum. The behavior fer=1.7 is presum-
linear cross-correlation coefficiefor Pearson's coefficient  aply a resonantlike behavior.

} S V)

between the two temporal serieg(t) andx,(t), given by In the following we will concentrate our attention on the
intermediate coupling regime 0.5&<1.61 and show that it
p=((X1 = (X)) (X2=(X2))) corresponds to a PS state. In particular, we will show that
> N here PS is set in absence of a contracting direction for the
(O = () V((x2—(x2))?) phases, at variance with what happens for autonomous cha-

otic coupled oscillators. Indeed, as it is seen in Fi@),2n
and reported in Fig. ®). One clearly sees that for 0.5& this regime the Lyapunov spectrum is composed of one posi-
<1.61, p takes a nearly constant negative value that differdive, two negative, and two zero exponents. The two vanish-
from zero but is not close te-1, thus indicating that some ing exponents correspond to the time translation invariance
sort of synchronized motion is established, which, however(a property which is insensitive to the couplipngnd to a
is far from complete synchronization. In the following we coupling induced common phase, respectively.
will show that in this range phase synchronization takes A practical difficulty in our analysis is that in the range of
place. In the quasiperiodic reginie>2.4), the value of the couplings 0.56.e<1.61 (from now on referred to as the PS
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FIG. 4. Power spectruniin arbitrary unit$ of the signalsx, FIG. 5. (a) Ag (see text for definitionvs time for e=0.4 (di-

(black) andx, (gray) vs the frequencyo for (a) €=0, (b) e=1, and

© e=1.7 verging curve and e=1 (bounded curvge (b) probability distribu-
C) e=1.7.

tion function of Ag (calculatedmod, ;) for e=0.4 (gray curve and

e=1 (black curve.

range, the instantaneous phases of the two oscillators are not

easy to calculate, since each oscillator has not a unique ceRower spectra. By using Matldli0], at eache value a pass-

ter of rotation[see Fig. {b)]. A first hint is given by inspec- band Butterworth filter (order=8, maximum band-pass

tion of the power spectra of, andx,. Figure 4 reports the 10ss=7 dB, minimum band-stop attenuatied0 dB) has

power spectra ofk; (black and x, (gray) for e=0 [un- been constructed centered around the second frequency peak

coupled case(@)], e=1 [in the middle of the PS rangé))], in the Fourier spectrum, and the instantaneous phagsesd

and e=1.7 [at the border of the PS range)]. In all cases, ¢2 of the two filtered signals have been evaluated.

the Fourier spectra are broad band, consistent with the cha- Figure 5 reports a long snapshot of the temporal evolution

otic dynamicsy and they contain two distinct peaks in Corre_Of the maximum instantaneous phase difference between the

spondence with the two external forcing frequencies  two fields

=0.6 andw;=0.65. In addition, the uncoupled specfFaig.

4(a)] show the presence of two other peaks that are harmon- Ap(t)=1(t) = $o(1) ©)

ics of the forcing frequencies. As we enter the PS range, the ) o

peaks corresponding to the forcing frequencies do not ovefor € values outsideée=0.4) and inside(e=1) the range for

lap, but a higher peak aroune=2.1 is set common in both Which the second Lyapunov exponent vanishes.

spectra, where frequency entrainment is obtajifég. 4b)].  Looking at Fig. $a), one easily realizes thate diffuses

The frequency location of this synchronization peak in-in @n almost random fashion toward infinity &t0.4. At

creases approximately linearly wita Finally, for e=1.7, Varance, fore=1, Agp bghaves alternating long epochs of

Fig. 4(c) shows two “synchronization” peaks ai—=1.6 and ~almost constant value, interrupted byr 3umps (or phase

w=2.6. For largere values, the chaotic attractor becomesS!iP9, with no apparent trend. The probability distribution

structurally unstable. In the region 16&<2.4, we have function (PDF) given in Fig. §b) confirms that fore=1 the

observed a rather rich dynamical behavior where chaotic re?hase difference between the two oscillators is sharply

gions are interrupted by periodic and quasiperiodic windowsPeaked aroundr. The complete synchronization obtained for

As we were primarily interested in the PS and CS regimedarger coupling valuge>2.4) corresponds to antiphase and

we did not investigate further this parameter range and leavi€ PDF is then single peaked around

it for further studies. An alternative way of measuring instantaneous phases of
The emergence of a synchronization peak suggests the u§Baotic oscillators has been recently propds, based on

of a band-pass filter to properly isolate a filtered signaithe frequency locking properties of forced periodic Poincare

around the second frequency peak in the Fourier spectra, @$cillators. The method consists in forcing a seflgferiodic

which the standard analytic continuation technigg] can  Oscillators by means of a common driving signal whose

be applied for the evaluation of the instantaneous phase. Wgeduency and instantaneous phase are unknown. The evolu-

emphasize that a unigue definition of the phase in a complefton of the phases of the forced oscillators is ruled fay

system is not available so far, and that a phase would be i Q;+Kx¢sin() i=1, ... N, where(); are the natural fre-

any case related to some “band” in the frequency domainquencies of the oscillators, akdis a coupling constant. Due

As a consequence, it is often unavoidable to use some bantb the coupling, a subset of thi¢ oscillators will phase lock

pass filtering procedure to extract the phase dynamics in with the external driving, exhibiting an average frequency

band. Relevant examples where such a procedure has betvat can be taken as a measure of the mean frequency. of

implemented include brain measuremeflike electroen- This is revealed by the emergence of a horizontal plafeau

cephalograms, magnetoencephalograms, and chaotic laser aynchronization platea(8P ] when plotting the average fre-

rays[3]), where a phase analysis would have not been posjuency of the forced oscillators vs their natural frequencies

sible without filtering. In the present case, this is rather(};. As a consequence, the frequency value of the SP can be

clearly motivated from the well-expressed bands in thetaken as a measure of the average frequency of the forcing
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signal, and the instantaneous phase&ofan be taken as the ' '

phase of any of the oscillators belonging to a SP. We then 03

consider two setsone for each systenof N=350 of such 02 g

periodic oscillators with natural frequencies distributed be-

tween;=0.01 andQ5,=3.5 with Q,; ,;—Q;=0.01, and <A90>.1- 1

force them with both signals; andx, for K=0.5 at various 0 N A

coupling strengtte. v \\/
At different coupling strengths, the resulting plots report- 0.1F . [

ing the average frequency of the forced oscillators vs their 0 1 2

natural frequencie$); contain several different SP’s, corre-
sponding to the dominant frequency peaks emerging in the FIG. 6. Average frequency mismata() (see text for defini-
Fourier spectra. It is therefore possible to consider the secoriin) vs e
SP in these plotéthe second peak in the spectra outside the ) . . o )
low frequency peaks associated to the two forcing frequendifference variable itself is bounded in time, but it does ex-
cies, and report the mean frequency different® = (w),_ perience nonnegligible residual fluctuations, thus its dynami-
_<w>X2’ Where<w)xl (<w>x2) is the value of this SP when cal behavior is far from being a contractive relaxgtlor! toyvard
D ) . . a constant valugs]. An alternative approach consists in link-
the pen_odlc oscillators are forced with the sigralandx,, ing the emergence of phase locking to the behavior of the
respectively. o unstable periodic orbits embedded within the chaotic attrac-
The results are presented in Fig. 6, where one notes @ [13]. In the present case, we have chosen the option to
frequency synchronization regimeA(2=0) for coupling  analyzing the system almost essentially in terms of the
strengthse inside the range for which a Lyapunov exponentchanges in the Lyapunov exponent spectrum. We have ob-
in the spectrunisee Fig. 28)] maintain a value close to zero. seryed partial frequency entrainment of dominant peaks in
This independent check for phase locking allows us to exghaotic spectra also in the absence of a negative Lyapunov
clude the possibility that the band-pass filtering techniquexponent in the phase difference direction. An open chal-
introduced artifacts due to possible side effects. ~ lenge for future work remains to satisfactorily link the fea-
A still open question concerns the basic dynamicakyres of phase entrainment with the dynamical properties

mechanism relating the appearance of phase locking and t'%‘?'nerging from the measurements of Lyapunov exponents.
properties of the Lyapunov spectrum. In the case of coupled

chaotic autonomous oscillators, phase synchronization oc- 1.B. acknowledges the financial support of the EU through
curs when a zero Lyapunov exponent becomes negiiye Grant No. HPRN-CT-2000-00158C0SYC of SEN$. Fi-
indicating the emergence of a contractive direction for thenancial support from MCYT(Spain, through Grant No.
phase difference. In such a PS regime, however, the pha®&=M2002-02011INEFLUID), is also acknowledged.
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